libstdc++
tr1/cmath
Go to the documentation of this file.
1 // TR1 cmath -*- C++ -*-
2 
3 // Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/cmath
26  * This is a TR1 C++ Library header.
27  */
28 
29 #ifndef _GLIBCXX_TR1_CMATH
30 #define _GLIBCXX_TR1_CMATH 1
31 
32 #pragma GCC system_header
33 
34 #include <cmath>
35 
36 #ifdef _GLIBCXX_USE_C99_MATH_TR1
37 
38 #undef acosh
39 #undef acoshf
40 #undef acoshl
41 #undef asinh
42 #undef asinhf
43 #undef asinhl
44 #undef atanh
45 #undef atanhf
46 #undef atanhl
47 #undef cbrt
48 #undef cbrtf
49 #undef cbrtl
50 #undef copysign
51 #undef copysignf
52 #undef copysignl
53 #undef erf
54 #undef erff
55 #undef erfl
56 #undef erfc
57 #undef erfcf
58 #undef erfcl
59 #undef exp2
60 #undef exp2f
61 #undef exp2l
62 #undef expm1
63 #undef expm1f
64 #undef expm1l
65 #undef fdim
66 #undef fdimf
67 #undef fdiml
68 #undef fma
69 #undef fmaf
70 #undef fmal
71 #undef fmax
72 #undef fmaxf
73 #undef fmaxl
74 #undef fmin
75 #undef fminf
76 #undef fminl
77 #undef hypot
78 #undef hypotf
79 #undef hypotl
80 #undef ilogb
81 #undef ilogbf
82 #undef ilogbl
83 #undef lgamma
84 #undef lgammaf
85 #undef lgammal
86 #undef llrint
87 #undef llrintf
88 #undef llrintl
89 #undef llround
90 #undef llroundf
91 #undef llroundl
92 #undef log1p
93 #undef log1pf
94 #undef log1pl
95 #undef log2
96 #undef log2f
97 #undef log2l
98 #undef logb
99 #undef logbf
100 #undef logbl
101 #undef lrint
102 #undef lrintf
103 #undef lrintl
104 #undef lround
105 #undef lroundf
106 #undef lroundl
107 #undef nan
108 #undef nanf
109 #undef nanl
110 #undef nearbyint
111 #undef nearbyintf
112 #undef nearbyintl
113 #undef nextafter
114 #undef nextafterf
115 #undef nextafterl
116 #undef nexttoward
117 #undef nexttowardf
118 #undef nexttowardl
119 #undef remainder
120 #undef remainderf
121 #undef remainderl
122 #undef remquo
123 #undef remquof
124 #undef remquol
125 #undef rint
126 #undef rintf
127 #undef rintl
128 #undef round
129 #undef roundf
130 #undef roundl
131 #undef scalbln
132 #undef scalblnf
133 #undef scalblnl
134 #undef scalbn
135 #undef scalbnf
136 #undef scalbnl
137 #undef tgamma
138 #undef tgammaf
139 #undef tgammal
140 #undef trunc
141 #undef truncf
142 #undef truncl
143 
144 #endif
145 
146 namespace std _GLIBCXX_VISIBILITY(default)
147 {
148 namespace tr1
149 {
150 _GLIBCXX_BEGIN_NAMESPACE_VERSION
151 
152 #if _GLIBCXX_USE_C99_MATH_TR1
153 
154  // types
155  using ::double_t;
156  using ::float_t;
157 
158  // functions
160  using ::acoshf;
161  using ::acoshl;
162 
164  using ::asinhf;
165  using ::asinhl;
166 
168  using ::atanhf;
169  using ::atanhl;
170 
171  using ::cbrt;
172  using ::cbrtf;
173  using ::cbrtl;
174 
175  using ::copysign;
176  using ::copysignf;
177  using ::copysignl;
178 
179  using ::erf;
180  using ::erff;
181  using ::erfl;
182 
183  using ::erfc;
184  using ::erfcf;
185  using ::erfcl;
186 
187  using ::exp2;
188  using ::exp2f;
189  using ::exp2l;
190 
191  using ::expm1;
192  using ::expm1f;
193  using ::expm1l;
194 
195  using ::fdim;
196  using ::fdimf;
197  using ::fdiml;
198 
199  using ::fma;
200  using ::fmaf;
201  using ::fmal;
202 
203  using ::fmax;
204  using ::fmaxf;
205  using ::fmaxl;
206 
207  using ::fmin;
208  using ::fminf;
209  using ::fminl;
210 
211  using ::hypot;
212  using ::hypotf;
213  using ::hypotl;
214 
215  using ::ilogb;
216  using ::ilogbf;
217  using ::ilogbl;
218 
219  using ::lgamma;
220  using ::lgammaf;
221  using ::lgammal;
222 
223  using ::llrint;
224  using ::llrintf;
225  using ::llrintl;
226 
227  using ::llround;
228  using ::llroundf;
229  using ::llroundl;
230 
231  using ::log1p;
232  using ::log1pf;
233  using ::log1pl;
234 
235  using ::log2;
236  using ::log2f;
237  using ::log2l;
238 
239  using ::logb;
240  using ::logbf;
241  using ::logbl;
242 
243  using ::lrint;
244  using ::lrintf;
245  using ::lrintl;
246 
247  using ::lround;
248  using ::lroundf;
249  using ::lroundl;
250 
251  using ::nan;
252  using ::nanf;
253  using ::nanl;
254 
255  using ::nearbyint;
256  using ::nearbyintf;
257  using ::nearbyintl;
258 
259  using ::nextafter;
260  using ::nextafterf;
261  using ::nextafterl;
262 
263  using ::nexttoward;
264  using ::nexttowardf;
265  using ::nexttowardl;
266 
267  using ::remainder;
268  using ::remainderf;
269  using ::remainderl;
270 
271  using ::remquo;
272  using ::remquof;
273  using ::remquol;
274 
275  using ::rint;
276  using ::rintf;
277  using ::rintl;
278 
279  using ::round;
280  using ::roundf;
281  using ::roundl;
282 
283  using ::scalbln;
284  using ::scalblnf;
285  using ::scalblnl;
286 
287  using ::scalbn;
288  using ::scalbnf;
289  using ::scalbnl;
290 
291  using ::tgamma;
292  using ::tgammaf;
293  using ::tgammal;
294 
295  using ::trunc;
296  using ::truncf;
297  using ::truncl;
298 
299 #endif
300 
301 #if _GLIBCXX_USE_C99_MATH
302 #if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
303 
304  /// Function template definitions [8.16.3].
305  template<typename _Tp>
306  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
307  int>::__type
308  fpclassify(_Tp __f)
309  {
310  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
311  return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
312  FP_SUBNORMAL, FP_ZERO, __type(__f));
313  }
314 
315  template<typename _Tp>
316  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
317  int>::__type
318  isfinite(_Tp __f)
319  {
320  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
321  return __builtin_isfinite(__type(__f));
322  }
323 
324  template<typename _Tp>
325  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
326  int>::__type
327  isinf(_Tp __f)
328  {
329  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
330  return __builtin_isinf(__type(__f));
331  }
332 
333  template<typename _Tp>
334  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
335  int>::__type
336  isnan(_Tp __f)
337  {
338  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
339  return __builtin_isnan(__type(__f));
340  }
341 
342  template<typename _Tp>
343  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
344  int>::__type
345  isnormal(_Tp __f)
346  {
347  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
348  return __builtin_isnormal(__type(__f));
349  }
350 
351  template<typename _Tp>
352  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
353  int>::__type
354  signbit(_Tp __f)
355  {
356  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
357  return __builtin_signbit(__type(__f));
358  }
359 
360  template<typename _Tp>
361  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
362  int>::__type
363  isgreater(_Tp __f1, _Tp __f2)
364  {
365  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
366  return __builtin_isgreater(__type(__f1), __type(__f2));
367  }
368 
369  template<typename _Tp>
370  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
371  int>::__type
372  isgreaterequal(_Tp __f1, _Tp __f2)
373  {
374  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
375  return __builtin_isgreaterequal(__type(__f1), __type(__f2));
376  }
377 
378  template<typename _Tp>
379  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
380  int>::__type
381  isless(_Tp __f1, _Tp __f2)
382  {
383  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
384  return __builtin_isless(__type(__f1), __type(__f2));
385  }
386 
387  template<typename _Tp>
388  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
389  int>::__type
390  islessequal(_Tp __f1, _Tp __f2)
391  {
392  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
393  return __builtin_islessequal(__type(__f1), __type(__f2));
394  }
395 
396  template<typename _Tp>
397  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
398  int>::__type
399  islessgreater(_Tp __f1, _Tp __f2)
400  {
401  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
402  return __builtin_islessgreater(__type(__f1), __type(__f2));
403  }
404 
405  template<typename _Tp>
406  inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
407  int>::__type
408  isunordered(_Tp __f1, _Tp __f2)
409  {
410  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
411  return __builtin_isunordered(__type(__f1), __type(__f2));
412  }
413 
414 #endif
415 #endif
416 
417 #if _GLIBCXX_USE_C99_MATH_TR1
418 
419  /// Additional overloads [8.16.4].
420  using std::acos;
421 
422  inline float
423  acosh(float __x)
424  { return __builtin_acoshf(__x); }
425 
426  inline long double
427  acosh(long double __x)
428  { return __builtin_acoshl(__x); }
429 
430  template<typename _Tp>
431  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
432  double>::__type
433  acosh(_Tp __x)
434  { return __builtin_acosh(__x); }
435 
436  using std::asin;
437 
438  inline float
439  asinh(float __x)
440  { return __builtin_asinhf(__x); }
441 
442  inline long double
443  asinh(long double __x)
444  { return __builtin_asinhl(__x); }
445 
446  template<typename _Tp>
447  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
448  double>::__type
449  asinh(_Tp __x)
450  { return __builtin_asinh(__x); }
451 
452  using std::atan;
453  using std::atan2;
454 
455  inline float
456  atanh(float __x)
457  { return __builtin_atanhf(__x); }
458 
459  inline long double
460  atanh(long double __x)
461  { return __builtin_atanhl(__x); }
462 
463  template<typename _Tp>
464  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
465  double>::__type
466  atanh(_Tp __x)
467  { return __builtin_atanh(__x); }
468 
469  inline float
470  cbrt(float __x)
471  { return __builtin_cbrtf(__x); }
472 
473  inline long double
474  cbrt(long double __x)
475  { return __builtin_cbrtl(__x); }
476 
477  template<typename _Tp>
478  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
479  double>::__type
480  cbrt(_Tp __x)
481  { return __builtin_cbrt(__x); }
482 
483  using std::ceil;
484 
485  inline float
486  copysign(float __x, float __y)
487  { return __builtin_copysignf(__x, __y); }
488 
489  inline long double
490  copysign(long double __x, long double __y)
491  { return __builtin_copysignl(__x, __y); }
492 
493  template<typename _Tp, typename _Up>
494  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
495  copysign(_Tp __x, _Up __y)
496  {
497  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
498  return copysign(__type(__x), __type(__y));
499  }
500 
501  using std::cos;
502  using std::cosh;
503 
504  inline float
505  erf(float __x)
506  { return __builtin_erff(__x); }
507 
508  inline long double
509  erf(long double __x)
510  { return __builtin_erfl(__x); }
511 
512  template<typename _Tp>
513  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
514  double>::__type
515  erf(_Tp __x)
516  { return __builtin_erf(__x); }
517 
518  inline float
519  erfc(float __x)
520  { return __builtin_erfcf(__x); }
521 
522  inline long double
523  erfc(long double __x)
524  { return __builtin_erfcl(__x); }
525 
526  template<typename _Tp>
527  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
528  double>::__type
529  erfc(_Tp __x)
530  { return __builtin_erfc(__x); }
531 
532  using std::exp;
533 
534  inline float
535  exp2(float __x)
536  { return __builtin_exp2f(__x); }
537 
538  inline long double
539  exp2(long double __x)
540  { return __builtin_exp2l(__x); }
541 
542  template<typename _Tp>
543  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
544  double>::__type
545  exp2(_Tp __x)
546  { return __builtin_exp2(__x); }
547 
548  inline float
549  expm1(float __x)
550  { return __builtin_expm1f(__x); }
551 
552  inline long double
553  expm1(long double __x)
554  { return __builtin_expm1l(__x); }
555 
556  template<typename _Tp>
557  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
558  double>::__type
559  expm1(_Tp __x)
560  { return __builtin_expm1(__x); }
561 
562  // Note: we deal with fabs in a special way, because an using std::fabs
563  // would bring in also the overloads for complex types, which in C++0x
564  // mode have a different return type.
565  // With __CORRECT_ISO_CPP_MATH_H_PROTO, math.h imports std::fabs in the
566  // global namespace after the declarations of the float / double / long
567  // double overloads but before the std::complex overloads.
568  using ::fabs;
569 
570 #ifndef __CORRECT_ISO_CPP_MATH_H_PROTO
571  inline float
572  fabs(float __x)
573  { return __builtin_fabsf(__x); }
574 
575  inline long double
576  fabs(long double __x)
577  { return __builtin_fabsl(__x); }
578 
579  template<typename _Tp>
580  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
581  double>::__type
582  fabs(_Tp __x)
583  { return __builtin_fabs(__x); }
584 #endif
585 
586  inline float
587  fdim(float __x, float __y)
588  { return __builtin_fdimf(__x, __y); }
589 
590  inline long double
591  fdim(long double __x, long double __y)
592  { return __builtin_fdiml(__x, __y); }
593 
594  template<typename _Tp, typename _Up>
595  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
596  fdim(_Tp __x, _Up __y)
597  {
598  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
599  return fdim(__type(__x), __type(__y));
600  }
601 
602  using std::floor;
603 
604  inline float
605  fma(float __x, float __y, float __z)
606  { return __builtin_fmaf(__x, __y, __z); }
607 
608  inline long double
609  fma(long double __x, long double __y, long double __z)
610  { return __builtin_fmal(__x, __y, __z); }
611 
612  template<typename _Tp, typename _Up, typename _Vp>
613  inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
614  fma(_Tp __x, _Up __y, _Vp __z)
615  {
616  typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
617  return fma(__type(__x), __type(__y), __type(__z));
618  }
619 
620  inline float
621  fmax(float __x, float __y)
622  { return __builtin_fmaxf(__x, __y); }
623 
624  inline long double
625  fmax(long double __x, long double __y)
626  { return __builtin_fmaxl(__x, __y); }
627 
628  template<typename _Tp, typename _Up>
629  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
630  fmax(_Tp __x, _Up __y)
631  {
632  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
633  return fmax(__type(__x), __type(__y));
634  }
635 
636  inline float
637  fmin(float __x, float __y)
638  { return __builtin_fminf(__x, __y); }
639 
640  inline long double
641  fmin(long double __x, long double __y)
642  { return __builtin_fminl(__x, __y); }
643 
644  template<typename _Tp, typename _Up>
645  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
646  fmin(_Tp __x, _Up __y)
647  {
648  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
649  return fmin(__type(__x), __type(__y));
650  }
651 
652  using std::fmod;
653  using std::frexp;
654 
655  inline float
656  hypot(float __x, float __y)
657  { return __builtin_hypotf(__x, __y); }
658 
659  inline long double
660  hypot(long double __x, long double __y)
661  { return __builtin_hypotl(__x, __y); }
662 
663  template<typename _Tp, typename _Up>
664  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
665  hypot(_Tp __y, _Up __x)
666  {
667  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
668  return hypot(__type(__y), __type(__x));
669  }
670 
671  inline int
672  ilogb(float __x)
673  { return __builtin_ilogbf(__x); }
674 
675  inline int
676  ilogb(long double __x)
677  { return __builtin_ilogbl(__x); }
678 
679  template<typename _Tp>
680  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
681  int>::__type
682  ilogb(_Tp __x)
683  { return __builtin_ilogb(__x); }
684 
685  using std::ldexp;
686 
687  inline float
688  lgamma(float __x)
689  { return __builtin_lgammaf(__x); }
690 
691  inline long double
692  lgamma(long double __x)
693  { return __builtin_lgammal(__x); }
694 
695  template<typename _Tp>
696  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
697  double>::__type
698  lgamma(_Tp __x)
699  { return __builtin_lgamma(__x); }
700 
701  inline long long
702  llrint(float __x)
703  { return __builtin_llrintf(__x); }
704 
705  inline long long
706  llrint(long double __x)
707  { return __builtin_llrintl(__x); }
708 
709  template<typename _Tp>
710  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
711  long long>::__type
712  llrint(_Tp __x)
713  { return __builtin_llrint(__x); }
714 
715  inline long long
716  llround(float __x)
717  { return __builtin_llroundf(__x); }
718 
719  inline long long
720  llround(long double __x)
721  { return __builtin_llroundl(__x); }
722 
723  template<typename _Tp>
724  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
725  long long>::__type
726  llround(_Tp __x)
727  { return __builtin_llround(__x); }
728 
729  using std::log;
730  using std::log10;
731 
732  inline float
733  log1p(float __x)
734  { return __builtin_log1pf(__x); }
735 
736  inline long double
737  log1p(long double __x)
738  { return __builtin_log1pl(__x); }
739 
740  template<typename _Tp>
741  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
742  double>::__type
743  log1p(_Tp __x)
744  { return __builtin_log1p(__x); }
745 
746  // DR 568.
747  inline float
748  log2(float __x)
749  { return __builtin_log2f(__x); }
750 
751  inline long double
752  log2(long double __x)
753  { return __builtin_log2l(__x); }
754 
755  template<typename _Tp>
756  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
757  double>::__type
758  log2(_Tp __x)
759  { return __builtin_log2(__x); }
760 
761  inline float
762  logb(float __x)
763  { return __builtin_logbf(__x); }
764 
765  inline long double
766  logb(long double __x)
767  { return __builtin_logbl(__x); }
768 
769  template<typename _Tp>
770  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
771  double>::__type
772  logb(_Tp __x)
773  {
774  return __builtin_logb(__x);
775  }
776 
777  inline long
778  lrint(float __x)
779  { return __builtin_lrintf(__x); }
780 
781  inline long
782  lrint(long double __x)
783  { return __builtin_lrintl(__x); }
784 
785  template<typename _Tp>
786  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
787  long>::__type
788  lrint(_Tp __x)
789  { return __builtin_lrint(__x); }
790 
791  inline long
792  lround(float __x)
793  { return __builtin_lroundf(__x); }
794 
795  inline long
796  lround(long double __x)
797  { return __builtin_lroundl(__x); }
798 
799  template<typename _Tp>
800  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
801  long>::__type
802  lround(_Tp __x)
803  { return __builtin_lround(__x); }
804 
805  inline float
806  nearbyint(float __x)
807  { return __builtin_nearbyintf(__x); }
808 
809  inline long double
810  nearbyint(long double __x)
811  { return __builtin_nearbyintl(__x); }
812 
813  template<typename _Tp>
814  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
815  double>::__type
816  nearbyint(_Tp __x)
817  { return __builtin_nearbyint(__x); }
818 
819  inline float
820  nextafter(float __x, float __y)
821  { return __builtin_nextafterf(__x, __y); }
822 
823  inline long double
824  nextafter(long double __x, long double __y)
825  { return __builtin_nextafterl(__x, __y); }
826 
827  template<typename _Tp, typename _Up>
828  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
829  nextafter(_Tp __x, _Up __y)
830  {
831  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
832  return nextafter(__type(__x), __type(__y));
833  }
834 
835  inline float
836  nexttoward(float __x, long double __y)
837  { return __builtin_nexttowardf(__x, __y); }
838 
839  inline long double
840  nexttoward(long double __x, long double __y)
841  { return __builtin_nexttowardl(__x, __y); }
842 
843  template<typename _Tp>
844  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
845  double>::__type
846  nexttoward(_Tp __x, long double __y)
847  { return __builtin_nexttoward(__x, __y); }
848 
849  inline float
850  remainder(float __x, float __y)
851  { return __builtin_remainderf(__x, __y); }
852 
853  inline long double
854  remainder(long double __x, long double __y)
855  { return __builtin_remainderl(__x, __y); }
856 
857  template<typename _Tp, typename _Up>
858  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
859  remainder(_Tp __x, _Up __y)
860  {
861  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
862  return remainder(__type(__x), __type(__y));
863  }
864 
865  inline float
866  remquo(float __x, float __y, int* __pquo)
867  { return __builtin_remquof(__x, __y, __pquo); }
868 
869  inline long double
870  remquo(long double __x, long double __y, int* __pquo)
871  { return __builtin_remquol(__x, __y, __pquo); }
872 
873  template<typename _Tp, typename _Up>
874  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
875  remquo(_Tp __x, _Up __y, int* __pquo)
876  {
877  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
878  return remquo(__type(__x), __type(__y), __pquo);
879  }
880 
881  inline float
882  rint(float __x)
883  { return __builtin_rintf(__x); }
884 
885  inline long double
886  rint(long double __x)
887  { return __builtin_rintl(__x); }
888 
889  template<typename _Tp>
890  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
891  double>::__type
892  rint(_Tp __x)
893  { return __builtin_rint(__x); }
894 
895  inline float
896  round(float __x)
897  { return __builtin_roundf(__x); }
898 
899  inline long double
900  round(long double __x)
901  { return __builtin_roundl(__x); }
902 
903  template<typename _Tp>
904  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
905  double>::__type
906  round(_Tp __x)
907  { return __builtin_round(__x); }
908 
909  inline float
910  scalbln(float __x, long __ex)
911  { return __builtin_scalblnf(__x, __ex); }
912 
913  inline long double
914  scalbln(long double __x, long __ex)
915  { return __builtin_scalblnl(__x, __ex); }
916 
917  template<typename _Tp>
918  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
919  double>::__type
920  scalbln(_Tp __x, long __ex)
921  { return __builtin_scalbln(__x, __ex); }
922 
923  inline float
924  scalbn(float __x, int __ex)
925  { return __builtin_scalbnf(__x, __ex); }
926 
927  inline long double
928  scalbn(long double __x, int __ex)
929  { return __builtin_scalbnl(__x, __ex); }
930 
931  template<typename _Tp>
932  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
933  double>::__type
934  scalbn(_Tp __x, int __ex)
935  { return __builtin_scalbn(__x, __ex); }
936 
937  using std::sin;
938  using std::sinh;
939  using std::sqrt;
940  using std::tan;
941  using std::tanh;
942 
943  inline float
944  tgamma(float __x)
945  { return __builtin_tgammaf(__x); }
946 
947  inline long double
948  tgamma(long double __x)
949  { return __builtin_tgammal(__x); }
950 
951  template<typename _Tp>
952  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
953  double>::__type
954  tgamma(_Tp __x)
955  { return __builtin_tgamma(__x); }
956 
957  inline float
958  trunc(float __x)
959  { return __builtin_truncf(__x); }
960 
961  inline long double
962  trunc(long double __x)
963  { return __builtin_truncl(__x); }
964 
965  template<typename _Tp>
966  inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
967  double>::__type
968  trunc(_Tp __x)
969  { return __builtin_trunc(__x); }
970 
971 #endif
972 _GLIBCXX_END_NAMESPACE_VERSION
973 }
974 }
975 
976 namespace std _GLIBCXX_VISIBILITY(default)
977 {
978 namespace tr1
979 {
980 _GLIBCXX_BEGIN_NAMESPACE_VERSION
981 
982  // DR 550. What should the return type of pow(float,int) be?
983  // NB: C++0x and TR1 != C++03.
984 
985  // The std::tr1::pow(double, double) overload cannot be provided
986  // here, because it would clash with ::pow(double,double) declared
987  // in <math.h>, if <tr1/math.h> is included at the same time (raised
988  // by the fix of PR c++/54537). It is not possible either to use the
989  // using-declaration 'using ::pow;' here, because if the user code
990  // has a 'using std::pow;', it would bring the pow(*,int) averloads
991  // in the tr1 namespace, which is undesirable. Consequently, the
992  // solution is to forward std::tr1::pow(double,double) to
993  // std::pow(double,double) via the templatized version below. See
994  // the discussion about this issue here:
995  // http://gcc.gnu.org/ml/gcc-patches/2012-09/msg01278.html
996 
997  inline float
998  pow(float __x, float __y)
999  { return std::pow(__x, __y); }
1000 
1001  inline long double
1002  pow(long double __x, long double __y)
1003  { return std::pow(__x, __y); }
1004 
1005  template<typename _Tp, typename _Up>
1006  inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
1007  pow(_Tp __x, _Up __y)
1008  {
1009  typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
1010  return std::pow(__type(__x), __type(__y));
1011  }
1012 
1013 _GLIBCXX_END_NAMESPACE_VERSION
1014 }
1015 }
1016 
1017 #include <bits/stl_algobase.h>
1018 #include <limits>
1019 #include <tr1/type_traits>
1020 
1021 #include <tr1/gamma.tcc>
1022 #include <tr1/bessel_function.tcc>
1023 #include <tr1/beta_function.tcc>
1024 #include <tr1/ell_integral.tcc>
1025 #include <tr1/exp_integral.tcc>
1026 #include <tr1/hypergeometric.tcc>
1027 #include <tr1/legendre_function.tcc>
1028 #include <tr1/modified_bessel_func.tcc>
1029 #include <tr1/poly_hermite.tcc>
1030 #include <tr1/poly_laguerre.tcc>
1031 #include <tr1/riemann_zeta.tcc>
1032 
1033 namespace std _GLIBCXX_VISIBILITY(default)
1034 {
1035 namespace tr1
1036 {
1037 _GLIBCXX_BEGIN_NAMESPACE_VERSION
1038 
1039  /**
1040  * @defgroup tr1_math_spec_func Mathematical Special Functions
1041  * @ingroup numerics
1042  *
1043  * A collection of advanced mathematical special functions.
1044  * @{
1045  */
1046 
1047  inline float
1048  assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
1049  { return __detail::__assoc_laguerre<float>(__n, __m, __x); }
1050 
1051  inline long double
1052  assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
1053  {
1054  return __detail::__assoc_laguerre<long double>(__n, __m, __x);
1055  }
1056 
1057  /// 5.2.1.1 Associated Laguerre polynomials.
1058  template<typename _Tp>
1059  inline typename __gnu_cxx::__promote<_Tp>::__type
1060  assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
1061  {
1062  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1063  return __detail::__assoc_laguerre<__type>(__n, __m, __x);
1064  }
1065 
1066  inline float
1067  assoc_legendref(unsigned int __l, unsigned int __m, float __x)
1068  { return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
1069 
1070  inline long double
1071  assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
1072  { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
1073 
1074  /// 5.2.1.2 Associated Legendre functions.
1075  template<typename _Tp>
1076  inline typename __gnu_cxx::__promote<_Tp>::__type
1077  assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
1078  {
1079  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1080  return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
1081  }
1082 
1083  inline float
1084  betaf(float __x, float __y)
1085  { return __detail::__beta<float>(__x, __y); }
1086 
1087  inline long double
1088  betal(long double __x, long double __y)
1089  { return __detail::__beta<long double>(__x, __y); }
1090 
1091  /// 5.2.1.3 Beta functions.
1092  template<typename _Tpx, typename _Tpy>
1093  inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
1094  beta(_Tpx __x, _Tpy __y)
1095  {
1096  typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
1097  return __detail::__beta<__type>(__x, __y);
1098  }
1099 
1100  inline float
1101  comp_ellint_1f(float __k)
1102  { return __detail::__comp_ellint_1<float>(__k); }
1103 
1104  inline long double
1105  comp_ellint_1l(long double __k)
1106  { return __detail::__comp_ellint_1<long double>(__k); }
1107 
1108  /// 5.2.1.4 Complete elliptic integrals of the first kind.
1109  template<typename _Tp>
1110  inline typename __gnu_cxx::__promote<_Tp>::__type
1111  comp_ellint_1(_Tp __k)
1112  {
1113  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1114  return __detail::__comp_ellint_1<__type>(__k);
1115  }
1116 
1117  inline float
1118  comp_ellint_2f(float __k)
1119  { return __detail::__comp_ellint_2<float>(__k); }
1120 
1121  inline long double
1122  comp_ellint_2l(long double __k)
1123  { return __detail::__comp_ellint_2<long double>(__k); }
1124 
1125  /// 5.2.1.5 Complete elliptic integrals of the second kind.
1126  template<typename _Tp>
1127  inline typename __gnu_cxx::__promote<_Tp>::__type
1128  comp_ellint_2(_Tp __k)
1129  {
1130  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1131  return __detail::__comp_ellint_2<__type>(__k);
1132  }
1133 
1134  inline float
1135  comp_ellint_3f(float __k, float __nu)
1136  { return __detail::__comp_ellint_3<float>(__k, __nu); }
1137 
1138  inline long double
1139  comp_ellint_3l(long double __k, long double __nu)
1140  { return __detail::__comp_ellint_3<long double>(__k, __nu); }
1141 
1142  /// 5.2.1.6 Complete elliptic integrals of the third kind.
1143  template<typename _Tp, typename _Tpn>
1144  inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
1145  comp_ellint_3(_Tp __k, _Tpn __nu)
1146  {
1147  typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
1148  return __detail::__comp_ellint_3<__type>(__k, __nu);
1149  }
1150 
1151  inline float
1152  conf_hypergf(float __a, float __c, float __x)
1153  { return __detail::__conf_hyperg<float>(__a, __c, __x); }
1154 
1155  inline long double
1156  conf_hypergl(long double __a, long double __c, long double __x)
1157  { return __detail::__conf_hyperg<long double>(__a, __c, __x); }
1158 
1159  /// 5.2.1.7 Confluent hypergeometric functions.
1160  template<typename _Tpa, typename _Tpc, typename _Tp>
1161  inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
1162  conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
1163  {
1164  typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
1165  return __detail::__conf_hyperg<__type>(__a, __c, __x);
1166  }
1167 
1168  inline float
1169  cyl_bessel_if(float __nu, float __x)
1170  { return __detail::__cyl_bessel_i<float>(__nu, __x); }
1171 
1172  inline long double
1173  cyl_bessel_il(long double __nu, long double __x)
1174  { return __detail::__cyl_bessel_i<long double>(__nu, __x); }
1175 
1176  /// 5.2.1.8 Regular modified cylindrical Bessel functions.
1177  template<typename _Tpnu, typename _Tp>
1178  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1179  cyl_bessel_i(_Tpnu __nu, _Tp __x)
1180  {
1181  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1182  return __detail::__cyl_bessel_i<__type>(__nu, __x);
1183  }
1184 
1185  inline float
1186  cyl_bessel_jf(float __nu, float __x)
1187  { return __detail::__cyl_bessel_j<float>(__nu, __x); }
1188 
1189  inline long double
1190  cyl_bessel_jl(long double __nu, long double __x)
1191  { return __detail::__cyl_bessel_j<long double>(__nu, __x); }
1192 
1193  /// 5.2.1.9 Cylindrical Bessel functions (of the first kind).
1194  template<typename _Tpnu, typename _Tp>
1195  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1196  cyl_bessel_j(_Tpnu __nu, _Tp __x)
1197  {
1198  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1199  return __detail::__cyl_bessel_j<__type>(__nu, __x);
1200  }
1201 
1202  inline float
1203  cyl_bessel_kf(float __nu, float __x)
1204  { return __detail::__cyl_bessel_k<float>(__nu, __x); }
1205 
1206  inline long double
1207  cyl_bessel_kl(long double __nu, long double __x)
1208  { return __detail::__cyl_bessel_k<long double>(__nu, __x); }
1209 
1210  /// 5.2.1.10 Irregular modified cylindrical Bessel functions.
1211  template<typename _Tpnu, typename _Tp>
1212  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1213  cyl_bessel_k(_Tpnu __nu, _Tp __x)
1214  {
1215  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1216  return __detail::__cyl_bessel_k<__type>(__nu, __x);
1217  }
1218 
1219  inline float
1220  cyl_neumannf(float __nu, float __x)
1221  { return __detail::__cyl_neumann_n<float>(__nu, __x); }
1222 
1223  inline long double
1224  cyl_neumannl(long double __nu, long double __x)
1225  { return __detail::__cyl_neumann_n<long double>(__nu, __x); }
1226 
1227  /// 5.2.1.11 Cylindrical Neumann functions.
1228  template<typename _Tpnu, typename _Tp>
1229  inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
1230  cyl_neumann(_Tpnu __nu, _Tp __x)
1231  {
1232  typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
1233  return __detail::__cyl_neumann_n<__type>(__nu, __x);
1234  }
1235 
1236  inline float
1237  ellint_1f(float __k, float __phi)
1238  { return __detail::__ellint_1<float>(__k, __phi); }
1239 
1240  inline long double
1241  ellint_1l(long double __k, long double __phi)
1242  { return __detail::__ellint_1<long double>(__k, __phi); }
1243 
1244  /// 5.2.1.12 Incomplete elliptic integrals of the first kind.
1245  template<typename _Tp, typename _Tpp>
1246  inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
1247  ellint_1(_Tp __k, _Tpp __phi)
1248  {
1249  typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
1250  return __detail::__ellint_1<__type>(__k, __phi);
1251  }
1252 
1253  inline float
1254  ellint_2f(float __k, float __phi)
1255  { return __detail::__ellint_2<float>(__k, __phi); }
1256 
1257  inline long double
1258  ellint_2l(long double __k, long double __phi)
1259  { return __detail::__ellint_2<long double>(__k, __phi); }
1260 
1261  /// 5.2.1.13 Incomplete elliptic integrals of the second kind.
1262  template<typename _Tp, typename _Tpp>
1263  inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
1264  ellint_2(_Tp __k, _Tpp __phi)
1265  {
1266  typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
1267  return __detail::__ellint_2<__type>(__k, __phi);
1268  }
1269 
1270  inline float
1271  ellint_3f(float __k, float __nu, float __phi)
1272  { return __detail::__ellint_3<float>(__k, __nu, __phi); }
1273 
1274  inline long double
1275  ellint_3l(long double __k, long double __nu, long double __phi)
1276  { return __detail::__ellint_3<long double>(__k, __nu, __phi); }
1277 
1278  /// 5.2.1.14 Incomplete elliptic integrals of the third kind.
1279  template<typename _Tp, typename _Tpn, typename _Tpp>
1280  inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
1281  ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
1282  {
1283  typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
1284  return __detail::__ellint_3<__type>(__k, __nu, __phi);
1285  }
1286 
1287  inline float
1288  expintf(float __x)
1289  { return __detail::__expint<float>(__x); }
1290 
1291  inline long double
1292  expintl(long double __x)
1293  { return __detail::__expint<long double>(__x); }
1294 
1295  /// 5.2.1.15 Exponential integrals.
1296  template<typename _Tp>
1297  inline typename __gnu_cxx::__promote<_Tp>::__type
1298  expint(_Tp __x)
1299  {
1300  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1301  return __detail::__expint<__type>(__x);
1302  }
1303 
1304  inline float
1305  hermitef(unsigned int __n, float __x)
1306  { return __detail::__poly_hermite<float>(__n, __x); }
1307 
1308  inline long double
1309  hermitel(unsigned int __n, long double __x)
1310  { return __detail::__poly_hermite<long double>(__n, __x); }
1311 
1312  /// 5.2.1.16 Hermite polynomials.
1313  template<typename _Tp>
1314  inline typename __gnu_cxx::__promote<_Tp>::__type
1315  hermite(unsigned int __n, _Tp __x)
1316  {
1317  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1318  return __detail::__poly_hermite<__type>(__n, __x);
1319  }
1320 
1321  inline float
1322  hypergf(float __a, float __b, float __c, float __x)
1323  { return __detail::__hyperg<float>(__a, __b, __c, __x); }
1324 
1325  inline long double
1326  hypergl(long double __a, long double __b, long double __c, long double __x)
1327  { return __detail::__hyperg<long double>(__a, __b, __c, __x); }
1328 
1329  /// 5.2.1.17 Hypergeometric functions.
1330  template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
1331  inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
1332  hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
1333  {
1334  typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
1335  return __detail::__hyperg<__type>(__a, __b, __c, __x);
1336  }
1337 
1338  inline float
1339  laguerref(unsigned int __n, float __x)
1340  { return __detail::__laguerre<float>(__n, __x); }
1341 
1342  inline long double
1343  laguerrel(unsigned int __n, long double __x)
1344  { return __detail::__laguerre<long double>(__n, __x); }
1345 
1346  /// 5.2.1.18 Laguerre polynomials.
1347  template<typename _Tp>
1348  inline typename __gnu_cxx::__promote<_Tp>::__type
1349  laguerre(unsigned int __n, _Tp __x)
1350  {
1351  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1352  return __detail::__laguerre<__type>(__n, __x);
1353  }
1354 
1355  inline float
1356  legendref(unsigned int __n, float __x)
1357  { return __detail::__poly_legendre_p<float>(__n, __x); }
1358 
1359  inline long double
1360  legendrel(unsigned int __n, long double __x)
1361  { return __detail::__poly_legendre_p<long double>(__n, __x); }
1362 
1363  /// 5.2.1.19 Legendre polynomials.
1364  template<typename _Tp>
1365  inline typename __gnu_cxx::__promote<_Tp>::__type
1366  legendre(unsigned int __n, _Tp __x)
1367  {
1368  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1369  return __detail::__poly_legendre_p<__type>(__n, __x);
1370  }
1371 
1372  inline float
1373  riemann_zetaf(float __x)
1374  { return __detail::__riemann_zeta<float>(__x); }
1375 
1376  inline long double
1377  riemann_zetal(long double __x)
1378  { return __detail::__riemann_zeta<long double>(__x); }
1379 
1380  /// 5.2.1.20 Riemann zeta function.
1381  template<typename _Tp>
1382  inline typename __gnu_cxx::__promote<_Tp>::__type
1383  riemann_zeta(_Tp __x)
1384  {
1385  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1386  return __detail::__riemann_zeta<__type>(__x);
1387  }
1388 
1389  inline float
1390  sph_besself(unsigned int __n, float __x)
1391  { return __detail::__sph_bessel<float>(__n, __x); }
1392 
1393  inline long double
1394  sph_bessell(unsigned int __n, long double __x)
1395  { return __detail::__sph_bessel<long double>(__n, __x); }
1396 
1397  /// 5.2.1.21 Spherical Bessel functions.
1398  template<typename _Tp>
1399  inline typename __gnu_cxx::__promote<_Tp>::__type
1400  sph_bessel(unsigned int __n, _Tp __x)
1401  {
1402  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1403  return __detail::__sph_bessel<__type>(__n, __x);
1404  }
1405 
1406  inline float
1407  sph_legendref(unsigned int __l, unsigned int __m, float __theta)
1408  { return __detail::__sph_legendre<float>(__l, __m, __theta); }
1409 
1410  inline long double
1411  sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
1412  { return __detail::__sph_legendre<long double>(__l, __m, __theta); }
1413 
1414  /// 5.2.1.22 Spherical associated Legendre functions.
1415  template<typename _Tp>
1416  inline typename __gnu_cxx::__promote<_Tp>::__type
1417  sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
1418  {
1419  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1420  return __detail::__sph_legendre<__type>(__l, __m, __theta);
1421  }
1422 
1423  inline float
1424  sph_neumannf(unsigned int __n, float __x)
1425  { return __detail::__sph_neumann<float>(__n, __x); }
1426 
1427  inline long double
1428  sph_neumannl(unsigned int __n, long double __x)
1429  { return __detail::__sph_neumann<long double>(__n, __x); }
1430 
1431  /// 5.2.1.23 Spherical Neumann functions.
1432  template<typename _Tp>
1433  inline typename __gnu_cxx::__promote<_Tp>::__type
1434  sph_neumann(unsigned int __n, _Tp __x)
1435  {
1436  typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
1437  return __detail::__sph_neumann<__type>(__n, __x);
1438  }
1439 
1440  /* @} */ // tr1_math_spec_func
1441 _GLIBCXX_END_NAMESPACE_VERSION
1442 }
1443 }
1444 
1445 #endif // _GLIBCXX_TR1_CMATH
__gnu_cxx::__promote< _Tp >::__type comp_ellint_2(_Tp __k)
5.2.1.5 Complete elliptic integrals of the second kind.
Definition: tr1/cmath:1128
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
Definition: tr1/complex:298
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_1(_Tp __k, _Tpp __phi)
5.2.1.12 Incomplete elliptic integrals of the first kind.
Definition: tr1/cmath:1247
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].
Definition: tr1/complex:215
std::complex< _Tp > asin(const std::complex< _Tp > &)
asin(__z) [8.1.3].
Definition: complex:1645
std::complex< _Tp > fabs(const std::complex< _Tp > &)
fabs(__z) [8.1.8].
Definition: tr1/complex:307
complex< _Tp > sin(const complex< _Tp > &)
Return complex sine of z.
Definition: complex:819
__gnu_cxx::__promote< _Tp >::__type comp_ellint_1(_Tp __k)
5.2.1.4 Complete elliptic integrals of the first kind.
Definition: tr1/cmath:1111
complex< _Tp > exp(const complex< _Tp > &)
Return complex base e exponential of z.
Definition: complex:757
__gnu_cxx::__promote< _Tp >::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
5.2.1.22 Spherical associated Legendre functions.
Definition: tr1/cmath:1417
__gnu_cxx::__promote_2< _Tp, _Tpn >::__type comp_ellint_3(_Tp __k, _Tpn __nu)
5.2.1.6 Complete elliptic integrals of the third kind.
Definition: tr1/cmath:1145
complex< _Tp > sqrt(const complex< _Tp > &)
Return complex square root of z.
Definition: complex:893
complex< _Tp > cosh(const complex< _Tp > &)
Return complex hyperbolic cosine of z.
Definition: complex:731
__gnu_cxx::__promote< _Tp >::__type legendre(unsigned int __n, _Tp __x)
5.2.1.19 Legendre polynomials.
Definition: tr1/cmath:1366
complex< _Tp > pow(const complex< _Tp > &, int)
Return x to the y&#39;th power.
Definition: complex:979
std::complex< _Tp > atanh(const std::complex< _Tp > &)
atanh(__z) [8.1.7].
Definition: complex:1808
__gnu_cxx::__promote< _Tp >::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
5.2.1.2 Associated Legendre functions.
Definition: tr1/cmath:1077
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
Definition: complex:1764
__gnu_cxx::__promote< _Tp >::__type sph_bessel(unsigned int __n, _Tp __x)
5.2.1.21 Spherical Bessel functions.
Definition: tr1/cmath:1400
__gnu_cxx::__promote< _Tp >::__type expint(_Tp __x)
5.2.1.15 Exponential integrals.
Definition: tr1/cmath:1298
complex< _Tp > sinh(const complex< _Tp > &)
Return complex hyperbolic sine of z.
Definition: complex:849
__gnu_cxx::__promote< _Tp >::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
5.2.1.1 Associated Laguerre polynomials.
Definition: tr1/cmath:1060
__gnu_cxx::__promote< _Tp >::__type hermite(unsigned int __n, _Tp __x)
5.2.1.16 Hermite polynomials.
Definition: tr1/cmath:1315
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_neumann(_Tpnu __nu, _Tp __x)
5.2.1.11 Cylindrical Neumann functions.
Definition: tr1/cmath:1230
std::complex< _Tp > asinh(const std::complex< _Tp > &)
asinh(__z) [8.1.6].
Definition: tr1/complex:254
__gnu_cxx::__promote_3< _Tpa, _Tpc, _Tp >::__type conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
5.2.1.7 Confluent hypergeometric functions.
Definition: tr1/cmath:1162
__gnu_cxx::__promote_3< _Tp, _Tpn, _Tpp >::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
5.2.1.14 Incomplete elliptic integrals of the third kind.
Definition: tr1/cmath:1281
__gnu_cxx::__promote_4< _Tpa, _Tpb, _Tpc, _Tp >::__type hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
5.2.1.17 Hypergeometric functions.
Definition: tr1/cmath:1332
std::complex< _Tp > acosh(const std::complex< _Tp > &)
acosh(__z) [8.1.5].
Definition: complex:1725
std::complex< _Tp > acos(const std::complex< _Tp > &)
acos(__z) [8.1.2].
Definition: complex:1609
__gnu_cxx::__promote< _Tp >::__type riemann_zeta(_Tp __x)
5.2.1.20 Riemann zeta function.
Definition: tr1/cmath:1383
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_j(_Tpnu __nu, _Tp __x)
5.2.1.9 Cylindrical Bessel functions (of the first kind).
Definition: tr1/cmath:1196
complex< _Tp > tan(const complex< _Tp > &)
Return complex tangent of z.
Definition: complex:920
complex< _Tp > log10(const complex< _Tp > &)
Return complex base 10 logarithm of z.
Definition: complex:789
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_i(_Tpnu __nu, _Tp __x)
5.2.1.8 Regular modified cylindrical Bessel functions.
Definition: tr1/cmath:1179
__gnu_cxx::__promote< _Tp >::__type sph_neumann(unsigned int __n, _Tp __x)
5.2.1.23 Spherical Neumann functions.
Definition: tr1/cmath:1434
__gnu_cxx::__promote_2< _Tp, _Tpp >::__type ellint_2(_Tp __k, _Tpp __phi)
5.2.1.13 Incomplete elliptic integrals of the second kind.
Definition: tr1/cmath:1264
complex< _Tp > tanh(const complex< _Tp > &)
Return complex hyperbolic tangent of z.
Definition: complex:948
complex< _Tp > cos(const complex< _Tp > &)
Return complex cosine of z.
Definition: complex:701
__gnu_cxx::__promote_2< _Tpnu, _Tp >::__type cyl_bessel_k(_Tpnu __nu, _Tp __x)
5.2.1.10 Irregular modified cylindrical Bessel functions.
Definition: tr1/cmath:1213
std::complex< _Tp > atan(const std::complex< _Tp > &)
atan(__z) [8.1.4].
Definition: complex:1689
complex< _Tp > log(const complex< _Tp > &)
Return complex natural logarithm of z.
Definition: complex:784
__gnu_cxx::__promote< _Tp >::__type laguerre(unsigned int __n, _Tp __x)
5.2.1.18 Laguerre polynomials.
Definition: tr1/cmath:1349
__gnu_cxx::__promote_2< _Tpx, _Tpy >::__type beta(_Tpx __x, _Tpy __y)
5.2.1.3 Beta functions.
Definition: tr1/cmath:1094
_Tp fabs(const std::complex< _Tp > &)
fabs(__z) [8.1.8].
Definition: complex:1817