libstdc++
regex_executor.tcc
Go to the documentation of this file.
1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2014 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  * @file bits/regex_executor.tcc
27  * This is an internal header file, included by other library headers.
28  * Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 
37  template<typename _BiIter, typename _Alloc, typename _TraitsT,
38  bool __dfs_mode>
39  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40  _M_search()
41  {
42  if (_M_flags & regex_constants::match_continuous)
43  return _M_search_from_first();
44  auto __cur = _M_begin;
45  do
46  {
47  _M_current = __cur;
48  if (_M_main<false>())
49  return true;
50  }
51  // Continue when __cur == _M_end
52  while (__cur++ != _M_end);
53  return false;
54  }
55 
56  // This function operates in different modes, DFS mode or BFS mode, indicated
57  // by template parameter __dfs_mode. See _M_main for details.
58  //
59  // ------------------------------------------------------------
60  //
61  // DFS mode:
62  //
63  // It applies a Depth-First-Search (aka backtracking) on given NFA and input
64  // string.
65  // At the very beginning the executor stands in the start state, then it tries
66  // every possible state transition in current state recursively. Some state
67  // transitions consume input string, say, a single-char-matcher or a
68  // back-reference matcher; some don't, like assertion or other anchor nodes.
69  // When the input is exhausted and/or the current state is an accepting state,
70  // the whole executor returns true.
71  //
72  // TODO: This approach is exponentially slow for certain input.
73  // Try to compile the NFA to a DFA.
74  //
75  // Time complexity: o(match_length), O(2^(_M_nfa.size()))
76  // Space complexity: \theta(match_results.size() + match_length)
77  //
78  // ------------------------------------------------------------
79  //
80  // BFS mode:
81  //
82  // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
83  // explained this algorithm clearly.
84  //
85  // It first computes epsilon closure for every state that's still matching,
86  // using the same DFS algorithm, but doesn't reenter states (set true in
87  // _M_visited), nor follows _S_opcode_match.
88  //
89  // Then apply DFS using every _S_opcode_match (in _M_match_queue) as the start
90  // state.
91  //
92  // It significantly reduces potential duplicate states, so has a better
93  // upper bound; but it requires more overhead.
94  //
95  // Time complexity: o(match_length * match_results.size())
96  // O(match_length * _M_nfa.size() * match_results.size())
97  // Space complexity: o(_M_nfa.size() + match_results.size())
98  // O(_M_nfa.size() * match_results.size())
99  template<typename _BiIter, typename _Alloc, typename _TraitsT,
100  bool __dfs_mode>
101  template<bool __match_mode>
102  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
103  _M_main()
104  {
105  if (__dfs_mode)
106  {
107  _M_has_sol = false;
108  _M_cur_results = _M_results;
109  _M_dfs<__match_mode>(_M_start_state);
110  return _M_has_sol;
111  }
112  else
113  {
114  _M_match_queue->push(make_pair(_M_start_state, _M_results));
115  bool __ret = false;
116  while (1)
117  {
118  _M_has_sol = false;
119  if (_M_match_queue->empty())
120  break;
121  _M_visited->assign(_M_visited->size(), false);
122  auto _M_old_queue = std::move(*_M_match_queue);
123  while (!_M_old_queue.empty())
124  {
125  auto __task = _M_old_queue.front();
126  _M_old_queue.pop();
127  _M_cur_results = __task.second;
128  _M_dfs<__match_mode>(__task.first);
129  }
130  if (!__match_mode)
131  __ret |= _M_has_sol;
132  if (_M_current == _M_end)
133  break;
134  ++_M_current;
135  }
136  if (__match_mode)
137  __ret = _M_has_sol;
138  return __ret;
139  }
140  }
141 
142  // Return whether now match the given sub-NFA.
143  template<typename _BiIter, typename _Alloc, typename _TraitsT,
144  bool __dfs_mode>
145  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
146  _M_lookahead(_State<_TraitsT> __state)
147  {
148  _ResultsVec __what(_M_cur_results.size());
149  auto __sub = std::unique_ptr<_Executor>(new _Executor(_M_current,
150  _M_end,
151  __what,
152  _M_re,
153  _M_flags));
154  __sub->_M_start_state = __state._M_alt;
155  if (__sub->_M_search_from_first())
156  {
157  for (size_t __i = 0; __i < __what.size(); __i++)
158  if (__what[__i].matched)
159  _M_cur_results[__i] = __what[__i];
160  return true;
161  }
162  return false;
163  }
164 
165  // TODO: Use a function vector to dispatch, instead of using switch-case.
166  template<typename _BiIter, typename _Alloc, typename _TraitsT,
167  bool __dfs_mode>
168  template<bool __match_mode>
169  void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
170  _M_dfs(_StateIdT __i)
171  {
172  if (!__dfs_mode)
173  {
174  if ((*_M_visited)[__i])
175  return;
176  (*_M_visited)[__i] = true;
177  }
178 
179  const auto& __state = _M_nfa[__i];
180  // Every change on _M_cur_results and _M_current will be rolled back after
181  // finishing the recursion step.
182  switch (__state._M_opcode)
183  {
184  // _M_alt branch is "match once more", while _M_next is "get me out
185  // of this quantifier". Executing _M_next first or _M_alt first don't
186  // mean the same thing, and we need to choose the correct order under
187  // given greedy mode.
188  case _S_opcode_alternative:
189  // Greedy.
190  if (!__state._M_neg)
191  {
192  // "Once more" is preferred in greedy mode.
193  _M_dfs<__match_mode>(__state._M_alt);
194  // If it's DFS executor and already accepted, we're done.
195  if (!__dfs_mode || !_M_has_sol)
196  _M_dfs<__match_mode>(__state._M_next);
197  }
198  else // Non-greedy mode
199  {
200  if (__dfs_mode)
201  {
202  // vice-versa.
203  _M_dfs<__match_mode>(__state._M_next);
204  if (!_M_has_sol)
205  _M_dfs<__match_mode>(__state._M_alt);
206  }
207  else
208  {
209  // DON'T attempt anything, because there's already another
210  // state with higher priority accepted. This state cannot be
211  // better by attempting its next node.
212  if (!_M_has_sol)
213  {
214  _M_dfs<__match_mode>(__state._M_next);
215  // DON'T attempt anything if it's already accepted. An
216  // accepted state *must* be better than a solution that
217  // matches a non-greedy quantifier one more time.
218  if (!_M_has_sol)
219  _M_dfs<__match_mode>(__state._M_alt);
220  }
221  }
222  }
223  break;
224  case _S_opcode_subexpr_begin:
225  // If there's nothing changed since last visit, do NOT continue.
226  // This prevents the executor from get into infinite loop when using
227  // "()*" to match "".
228  if (!_M_cur_results[__state._M_subexpr].matched
229  || _M_cur_results[__state._M_subexpr].first != _M_current)
230  {
231  auto& __res = _M_cur_results[__state._M_subexpr];
232  auto __back = __res.first;
233  __res.first = _M_current;
234  _M_dfs<__match_mode>(__state._M_next);
235  __res.first = __back;
236  }
237  break;
238  case _S_opcode_subexpr_end:
239  if (_M_cur_results[__state._M_subexpr].second != _M_current
240  || _M_cur_results[__state._M_subexpr].matched != true)
241  {
242  auto& __res = _M_cur_results[__state._M_subexpr];
243  auto __back = __res;
244  __res.second = _M_current;
245  __res.matched = true;
246  _M_dfs<__match_mode>(__state._M_next);
247  __res = __back;
248  }
249  else
250  _M_dfs<__match_mode>(__state._M_next);
251  break;
252  case _S_opcode_line_begin_assertion:
253  if (_M_at_begin())
254  _M_dfs<__match_mode>(__state._M_next);
255  break;
256  case _S_opcode_line_end_assertion:
257  if (_M_at_end())
258  _M_dfs<__match_mode>(__state._M_next);
259  break;
260  case _S_opcode_word_boundary:
261  if (_M_word_boundary(__state) == !__state._M_neg)
262  _M_dfs<__match_mode>(__state._M_next);
263  break;
264  // Here __state._M_alt offers a single start node for a sub-NFA.
265  // We recursively invoke our algorithm to match the sub-NFA.
266  case _S_opcode_subexpr_lookahead:
267  if (_M_lookahead(__state) == !__state._M_neg)
268  _M_dfs<__match_mode>(__state._M_next);
269  break;
270  case _S_opcode_match:
271  if (__dfs_mode)
272  {
273  if (_M_current != _M_end && __state._M_matches(*_M_current))
274  {
275  ++_M_current;
276  _M_dfs<__match_mode>(__state._M_next);
277  --_M_current;
278  }
279  }
280  else
281  if (__state._M_matches(*_M_current))
282  _M_match_queue->push(make_pair(__state._M_next, _M_cur_results));
283  break;
284  // First fetch the matched result from _M_cur_results as __submatch;
285  // then compare it with
286  // (_M_current, _M_current + (__submatch.second - __submatch.first)).
287  // If matched, keep going; else just return and try another state.
288  case _S_opcode_backref:
289  {
290  _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
291  auto& __submatch = _M_cur_results[__state._M_backref_index];
292  if (!__submatch.matched)
293  break;
294  auto __last = _M_current;
295  for (auto __tmp = __submatch.first;
296  __last != _M_end && __tmp != __submatch.second;
297  ++__tmp)
298  ++__last;
299  if (_M_re._M_traits.transform(__submatch.first,
300  __submatch.second)
301  == _M_re._M_traits.transform(_M_current, __last))
302  {
303  if (__last != _M_current)
304  {
305  auto __backup = _M_current;
306  _M_current = __last;
307  _M_dfs<__match_mode>(__state._M_next);
308  _M_current = __backup;
309  }
310  else
311  _M_dfs<__match_mode>(__state._M_next);
312  }
313  }
314  break;
315  case _S_opcode_accept:
316  if (__dfs_mode)
317  {
318  _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
319  if (__match_mode)
320  _M_has_sol = _M_current == _M_end;
321  else
322  _M_has_sol = true;
323  if (_M_current == _M_begin
324  && (_M_flags & regex_constants::match_not_null))
325  _M_has_sol = false;
326  if (_M_has_sol)
327  _M_results = _M_cur_results;
328  }
329  else
330  {
331  if (_M_current == _M_begin
332  && (_M_flags & regex_constants::match_not_null))
333  break;
334  if (!__match_mode || _M_current == _M_end)
335  if (!_M_has_sol)
336  {
337  _M_has_sol = true;
338  _M_results = _M_cur_results;
339  }
340  }
341  break;
342  default:
343  _GLIBCXX_DEBUG_ASSERT(false);
344  }
345  }
346 
347  // Return whether now is at some word boundary.
348  template<typename _BiIter, typename _Alloc, typename _TraitsT,
349  bool __dfs_mode>
350  bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
351  _M_word_boundary(_State<_TraitsT> __state) const
352  {
353  // By definition.
354  bool __ans = false;
355  auto __pre = _M_current;
356  --__pre;
357  if (!(_M_at_begin() && _M_at_end()))
358  {
359  if (_M_at_begin())
360  __ans = _M_is_word(*_M_current)
361  && !(_M_flags & regex_constants::match_not_bow);
362  else if (_M_at_end())
363  __ans = _M_is_word(*__pre)
364  && !(_M_flags & regex_constants::match_not_eow);
365  else
366  __ans = _M_is_word(*_M_current)
367  != _M_is_word(*__pre);
368  }
369  return __ans;
370  }
371 
372 _GLIBCXX_END_NAMESPACE_VERSION
373 } // namespace __detail
374 } // namespace
20.7.1.2 unique_ptr for single objects.
Definition: unique_ptr.h:129
constexpr pair< typename __decay_and_strip< _T1 >::__type, typename __decay_and_strip< _T2 >::__type > make_pair(_T1 &&__x, _T2 &&__y)
A convenience wrapper for creating a pair from two objects.
Definition: stl_pair.h:276